4767 Statistics 2

Question 1

| (iv) | (A) \quadFor $t=80$, predicted speed
 $=-0.011 \times 80+2.73=1.85$ | M1
 A1 FT provided $\mathrm{b}<0$ | |
| :--- | :--- | :--- | :--- | :---: |
| The relationship relates to adults, but a ten year old
 will not be fully grown so may walk more slowly. | E1 extrapolation o.e.
 E1 sensible contextual
 nB Allow E1 for comment about extrapolation not in context | $\mathbf{4}$ | |
| | | TOTAL | $\mathbf{2 0}$ |

Question 2

(i)	Binomial(5000,0.0001)	B1 for binomial B1 dep, for parameters	2
(ii)	n is large and p is small $\lambda=5000 \times 0.0001=0.5$	B1, B1 (Allow appropriate numerical ranges) B1	3
(iii)	$\mathrm{P}(X \geq 1)=1-\dot{\mathrm{e}} \frac{0.5^{0}}{0!}=1-0.6065=0.3935$ $\text { or from tables }=1-0.6065=0.3935$	M1 for correct calculation or correct use of tables A1	2
(iv)	$\begin{aligned} & \mathrm{P}(9 \text { of } 20 \text { contain at least one }) \\ & =\binom{20}{9} \times 0.3935^{9} \times 0.6065^{11} \\ & =0.1552 \end{aligned}$	M1 for coefficient M1 for $p^{9} \times(1-p)^{11}, p$ from part (iii) A1	3
(v)	Expected number $=20 \times 0.3935=7.87$	M1 A1 FT	2
(vi)	$\begin{aligned} & \text { Mean }=\frac{\Sigma x f}{n}=\frac{7+4}{20}=\frac{11}{20}=0.55 \\ & \text { Variance }=\frac{1}{n-1}\left(\Sigma f x^{2}-n \bar{x}^{2}\right) \\ & \quad=\frac{1}{19}\left(15-20 \times 0.55^{2}\right)=0.471 \end{aligned}$	B1 for mean M1 for calculation A1 CAO	3
(vii)	Yes, since the mean is close to the variance, and also as the expected frequency for 'at least one', i.e. 7.87, is close to the observed frequency of 9 .	B1 E1 for sensible comparison B1 for observed frequency $=7+2=9$	3
		TOTAL	18

Question 3

\begin{tabular}{|c|c|c|c|}
\hline (i) \& \begin{tabular}{l}
(A)
\[
\begin{aligned}
\& \mathrm{P}(X<120)=\mathrm{P}\left(Z<\frac{120-115.3}{21.9}\right) \\
\& =\mathrm{P}(Z<0.2146) \\
\& =\Phi(0.2146)=0.5849
\end{aligned}
\]
\[
\left.\left.\begin{array}{l}
\text { (B) } \quad \mathrm{P}(100<X<110)= \\
\mathrm{P}\left(\frac{100}{}-115.3\right. \\
21.9
\end{array} \mathrm{Z}<\frac{110-115.3}{21.9}\right), ~ \mathrm{P}(-0.6986<Z<-0.2420) \mathrm{C}\right)
\] \\
(C) From tables \(\Phi^{-1}(0.1)=-1.282\)
\[
\begin{aligned}
\& \frac{k-115.3}{21.9}=-1.282 \\
\& k=115.3-1.282 \times 21.9=87.22
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 for standardizing A1 for \(z=0.2146\) \\
A1 CAO (min 3 sf, to include use of difference column) \\
M1 for standardizing both \(100 \& 110\) \\
M1 for correct structure in calc \(^{n}\) \\
A1 CAO \\
B1 for \(\pm 1.282\) seen M1 for equation in \(k\) and negative \(z\)-value \\
A1 CAO
\end{tabular} \& 3

3
3

\hline (ii) \& From tables,

\[
$$
\begin{aligned}
& \Phi^{-1}(0.70)=0.5244, \Phi^{-1}(0.15)=-1.036 \\
& 180=\mu+0.5244 \sigma \\
& 140=\mu-1.036 \sigma \\
& 40=1.5604 \sigma \\
& \sigma=25.63, \mu=166.55
\end{aligned}
$$

\] \& | B1 for 0.5244 or ± 1.036 seen |
| :--- |
| M1 for at least one equation in μ and σ and Φ^{-1} value |
| M1 dep for attempt to solve two equations A1 CAO for both | \& 4

\hline (iii) \& \[
$$
\begin{aligned}
& \Phi^{-1}(0.975)=1.96 \\
& a=166.55-1.96 \times 25.63=116.3 \\
& b=166.55+1.96 \times 25.63=216.8
\end{aligned}
$$

\] \& | B1 for ± 1.96 seen M1 for either equation A1 A1 |
| :--- |
| [Allow other correct intervals] | \& 4

\hline \& \& TOTAL \& 17

\hline
\end{tabular}

Question 4

(i)	H_{0} : no association between growth and type of plant; H_{1} : some association between growth and type of plant;				B1 (in context)	
	EXPECTED	Good	Average	Poor	M1 A2 for expected values (to 2 dp) (allow A1 for at least one row or column correct)	
	Coriander	12.10	24.93	17.97		
	Aster	10.56	21.76	15.68		
	Fennel	10.34	21.31	15.35		
	CONTRIBUTION	Good	Average	Poor	M1 for valid attempt at	
	Coriander	0.0008	0.3772	0.4899	(O-E) ${ }^{2} / \mathrm{E}$	
	Aster	1.2002	0.6497	3.4172	A1 for all correct	
	Fennel	1.2955	0.0226	1.2344	NB These M1A1 marks cannot be implied by a correct final value of X^{2}	
	$X^{2}=8.69$				M1 for summation A1 for X^{2} CAO	
	Refer to χ_{4}^{2}				B1 for 4 d.o.f.	
					B1 CAO for cv	
	Result is not signif There is not enou association betwee NB if $\mathrm{H}_{0} \mathrm{H}_{1}$ reversed, B1or final A1	evidence orted gr correlatio	suggest and type mentioned,	there is some plant; not award first	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \end{array}$	12
(ii)	$\text { Test statistic }=\frac{49.2-47}{8.5 / \sqrt{50}}=\frac{2.2}{1.202}=1.830$				M1 correct denominator A1	
	1% level 1 tailed critical value of $\mathrm{z}=2.326$				B1 for 2.326 M1 (dep on first M1) for	
	$1.830<2.326$ so not significant. There is not sufficient evidence to reject H_{0}				sensible comparison leading to a conclusion	
	There is insufficient evidence to conclude that the flowers are larger.				A1 for fully correct conclusion in words in context	5
					TOTAL	17

