January 2009

4767 Statistics 2

(i)	х	18	43	52	94	98	206	784	1530	M1 for attempt at ranking (allow all ranks reversed)	
	У	1.15	0.97	1.26	1.35	1.28	1.42	1.32	1.64	(allow all rains reversed)	
	Rank x	1	2	3	4	5	6	7	8		
	Rank y	2 -1	1	3	-2	4	7	5	8	M1 for d^2	
	$\frac{d}{d^2}$	1	1	0	-2 4	1	-1 1	4	0	M1 for a	
	<u>a</u>	1	1	U	4	1	1	4	U	A1 for $\Sigma d^2 = 12$	
										M1 for method for r_s	
	$r_s = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 12}{8 \times 63}$									A1 f.t. for $ r_s < 1$	5
	$n(n^2-1)$ 8×63							NB No ranking scores zero			
	= 0).857 (1	to 3 s.f	i.) [a	llow 0.	86 to 2	2 s.f.]				
(ii)											
	H ₀ : no as	ssociati	ion bet	ween .	X and	Y in th	e popu	lation		B1 for H ₀	
	H ₁ : some	assoc	iation	betwee	en X aı	nd Y in	the po	pulati	on	B1 for H ₁	
	Two tail t	test cri	tical v	alue at	5% le	vel is (0.7381			B1 for population SOI	
	Since 0.857> 0. 7381, there is sufficient evidence to reject								NB $H_0 H_1 \underline{not}$ ito ρ		
	H ₀ , i.e. conclude that the evidence suggests that there is								B1 for ± 0.7381		
	association between population size <i>X</i> and average walking speed <i>Y</i> .						M1 for sensible comparison with c.v., provided $ r_s < 1$ A1 for conclusion in words f.t. their r_s and	6			
										sensible cv	
(iii)	$\overline{t} = 45$, \overline{v}					10	2			B1 for t and w used (SOI)	
	$b = \frac{Stw}{Stt} = \frac{584.6 - 270 \times 13.42/6}{13900 - 270^2/6} = \frac{-19.3}{1750} = -0.011$ $OR \ b = \frac{584.6/6 - 45 \times 2.2367}{13900/6 - 45^2} = \frac{-3.218}{291.6667} = -0.011$ hence least squares regression line is: $w - w = b(t - t)$ $\Rightarrow w - 2.2367 = -0.011(t - 45)$						M1 for attempt at gradient (b) A1 CAO for -0.011 M1 for equation of line A1 FT for complete				
		$\Rightarrow w =$,	,				equation	
											5

4767 Mark Scheme January 2009

(iv)	(A) (B) NB AI	For $t = 80$, predicted speed = $-0.011 \times 80 + 2.73 = 1.85$ The relationship relates to adults, but a ten year old will not be fully grown so may walk more slowly. low E1 for comment about extrapolation not in context	M1 A1 FT provided b < 0 E1 extrapolation o.e. E1 sensible contextual comment	4
			TOTAL	20

(i)	Binomial(5000,0.0001)	B1 for binomial B1 dep, for parameters	2
(ii)	n is large and p is small $\lambda = 5000 \times 0.0001 = 0.5$	B1, B1 (Allow appropriate numerical ranges) B1	3
(iii)	$P(X \ge 1) = 1 - \tilde{e} \frac{0.5^0}{0!} = 1 - 0.6065 = 0.3935$	M1 for correct calculation or correct use of tables A1	2
	or from tables $= 1 - 0.6065 = 0.3935$		
(iv)	P(9 of 20 contain at least one) = $\binom{20}{9} \times 0.3935^9 \times 0.6065^{11}$ = 0.1552	M1 for coefficient M1 for $p^9 \times (1-p)^{11}$, p from part (iii) A1	3
(v)	Expected number = $20 \times 0.3935 = 7.87$	M1 A1 FT	2
(vi)	Mean = $\frac{\sum xf}{n} = \frac{7+4}{20} = \frac{11}{20} = 0.55$	B1 for mean	
	Variance = $\frac{1}{n-1} \left(\sum fx^2 - nx^2 \right)$	M1 for calculation	
	$= \frac{1}{19} \left(15 - 20 \times 0.55^2 \right) = 0.471$	A1 CAO	3
(vii)	Yes, since the mean is close to the variance,	B1	
	and also as the expected frequency for 'at least one', i.e. 7.87,	E1 for sensible comparison B1 for observed frequency	
	is close to the observed frequency of 9.	= 7 + 2 = 9	3
		TOTAL	18

4767 Mark Scheme January 2009

(i)	(A) $P(X < 120) = P\left(Z < \frac{120 - 115.3}{21.9}\right)$	M1 for standardizing	
	= P(Z < 0.2146)	A1 for $z = 0.2146$	
	$= \Phi(0.2146) = 0.5849$	A1 CAO (min 3 sf, to include use of difference column)	3
	(B) $P(100 < X < 110) =$		3
	$P\left(\frac{100 - 115.3}{21.9} < Z < \frac{110 - 115.3}{21.9}\right)$	M1 for standardizing both 100 & 110	
	$= P(-0.6986 < Z < -0.2420)$ $= \Phi(0.6986) - \Phi(0.2420)$ $= 0.7577 - 0.5956$	M1 for correct structure in calc ⁿ	
	=0.1621	A1 CAO	3
	(C) From tables $\Phi^{-1}(0.1) = -1.282$	B1 for ±1.282 seen	
	$\frac{k - 115.3}{21.9} = -1.282$	M1 for equation in <i>k</i> and negative z-value	
	$k = 115.3 - 1.282 \times 21.9 = 87.22$	A1 CAO	3
(ii)	From tables,	B1 for 0.5244 or ±1.036	
	$\Phi^{-1}(0.70) = 0.5244, \Phi^{-1}(0.15) = -1.036$	seen M1 for at least one	
	$180 = \mu + 0.5244 \ \sigma$	equation in μ and σ and Φ^{-1} value	
	$140 = \mu - 1.036 \ \sigma$	Ψ value	
	$40 = 1.5604 \ \sigma$	M1 dep for attempt to	
	$\sigma = 25.63, \mu = 166.55$	solve two equations A1 CAO for both	4
(iii)	$\Phi^{-1}(0.975) = 1.96$	B1 for ±1.96 seen	
	$a = 166.55 - 1.96 \times 25.63 = 116.3$	M1 for either equation A1	
	$b = 166.55 + 1.96 \times 25.63 = 216.8$	A1	4
		[Allow other correct intervals]	4
		TOTAL	17

4767 Mark Scheme January 2009

	H ₀ : no association be	tween growtl	h and type of	f plant;	B1 (in context)	
(i)	H ₁ : some association	between gro	wth and type	of plant;		
	EXPECTED	Good	Average	Poor	M1 A2 for expected	
	Coriander	12.10	24.93	17.97	values (to 2 dp)	
	Aster	10.56	21.76	15.68	(allow A1 for at least	
	Fennel	10.34	21.31	15.35	one row or column	
				<u> </u>	correct)	
	CONTRIBUTION	Good	Average	Poor	M1 for valid attempt at	
	Coriander	0.0008	0.3772	0.4899	$(O-E)^2/E$	
	Aster	1.2002	0.6497	3.4172	A1 for all correct NB These M1A1 marks cannot be implied by a	
	Fennel	1.2955	0.0226	1.2344	NB These M1A1 marks cannot be implied by a correct final value of X^2	
					M1 for summation A1 for X^2 CAO	
	Refer to χ_4^2		B1 for 4 d.o.f.			
	Critical value at 5% 1	level = 9.488			B1 CAO for cv	
	Result is not signification. There is not enough association between the NB if H ₀ H ₁ reversed, or B1 or final A1	n evidence to reported grov	M1 A1	12		
(ii)	Test statistic = $\frac{49.2 - 47}{8.5/\sqrt{50}} = \frac{2.2}{1.202} = 1.830$				M1 correct denominator	
	1% level 1 tailed crit 1.830 < 2.326 so not There is not sufficien	significant.	B1 for 2.326 M1 (dep on first M1) for sensible comparison leading to a conclusion			
	There is insufficient larger.		-	at the flowers are	A1 for fully correct conclusion in words in context	5
					TOTAL	17